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ABSTRACT

Relations of effficiency and non-efficiency for the same sets of DMUs (Decision Making Units) are

developed for the CCR, Additive and Multiplicative Models. Surprisingly, additively efficient DMUs are not

necessarily multiplicatively efficient. A geometric "stretching" phenomenon is identified for the latter case.
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1. INTRODUCTION

DEAAData Envelopment Analysis) first formulated model was a non-linear ratio (or fractional)

programming problem, as reported in Charnes, Cooper and Rhodesf4 fw-here it was also shown that the

fractional programming transformation first given in Chames and Coope-tm could be used to obtain a

corresponding dual pair of linear programming problems for use in evaluating the efficiency of not-for-

profit entities--such as schools, hospitals and government (including military) agencies. These

formulations were to be used to secure efficiency evaluations from observed data e'n the mu!tipl otputs

and multiple inputs generated by the activities of the entities to be studied. Numerical evaluations with

operational significance were to be secured without requiring recourse to a priori weights (or other

transformations) and without requiring explicit specification of parametric functional forms for the relations

that might obtain between the inputs and the outputs. Specification was to be required only for the

outputs and the inputs to be considered and the DMUs (Decision Making Units) which '(11 are responsible

for converting inputs into outputs and whose convex or conical combinations-(Wconstitute the relevant

set tor obtaining the relative efficiency evaluations that are wanted. (

This CCR ratio form was a generalization of the usual single-output-to-single-input ratio definition

of efficiency in science and engineering. Embedding this concept in a mathematical programming model

(with a corresponding optimization principle), as was done in the CCR ratio model accomplished

something more than providing a new way of viewing these time-honored (classical) approaches to

efficiency measurement and evaluation. In particular, (1) it provided an opening for extending these ideas

for use in situations involving multiple outputs and multiple inputs and (2) it also provided an opening for

contacts with other efficiency evaluation concepts such as the Pareto-Koopmans efficiency optimizations

in economics, or the vector-optimizations in mathematics.

The CCR ratio form as given in Charnes, Cooper and Rhodes [14] was subsequently extended

from the dual side into the BCC form as given in Banker, Charnes and Cooper [4]. This extension was

already present in the Charnes, Cooper, Seiford (1981) work (subsequently called the "Additive" model),

but the BCC, following the CCR format for getting directly an efficiency measure, introduced a new

measuring variable to the linear programming correspond of the CCR formulation. This variable, as
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described in Banker, Charnes and Cooper [4] could then be associated with the possible presence of

increasing, decreasing and constant returns to scale so that this dimension of efficiency could also be

evaluated along with any technical efficiencies (and inefficiencies) that might be present in the activities of

any DMU.

The CCR and BCC ratio form development did not exhaust the possibilities for using the

underlying DEA concepts and principles.1 For instance, earlier than the latter form Charnes, Cooper,

Seiford and Stutz [12] introduced a multiplicative ratio form and Charnes, Cooper, Seiford and

Stutz[13]subsequently extended this to obtain a "units invariant" version of this ratio form. There are

various parallels in the way these different ratio formulations utilize the concepts of DEA. Both are

invariant and multiple optimizations in both forms--one optimization on each observation--replace tne

usual once-only optimizations that are common in statistical approaches such those used in least squares

regression estimation. In this way, DEA produces efficiency frontier estimates which are piecewise linear

for the CCR and BCC models and which are piecewise log-linear for the multiplicative model2 . In either

case these piecewise segments may be regarded as local approximations to the underlying (possibly

multiple) functional forms from which the observations were generated.

These topics are studied in depth in Charnes, Cooper, Golany, Seiford and Stutz [11] where it is

shown that the basic concepts of DEA are very general and can also be used to provide new approaches

and relations to a variety of topics besides efficiency evaluation. Indeed, another "additive model" was

introduced in this article which is likewise identified with goal programming and this same formulation and

wide generalizations is related to the test for "Pareto efficiency" that was first given in Charnes and Cooper

[8] .3

1See the basic and earlier introduction of the convex hull by Charnes, Cooper and Seiford (1981) and DEA
model identifications with the Charnes-Cooper test for Pareto optimality as extended in Charnes, Cooper,
Golany, Seiford and Stutz [11].

2 See also Banker and Maindiratta [6] for a discussion of how the two can be used together, as may

be required when the production frontier is non-concave in some regions.

3 See also the earlier paper by Charnes and Cooper [9].
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2. EFFICIENCY RELATIONS FOR DIFFERENT DEA MODELS

Having identified various forms in which the DEA concepts may be embodied, it is natural to ask

about possible relations between them when applied to the same data. This topic is investigated in this

paper by reference to the CCR and BCC ratio forms, the additive form, and the multiplicative form. Using

xij > 0, i = 1 .. m for the observed inputs and Yij > 0, r = 1, ... , s, for the observed output values for

each of j = 1 .... n DMUs we exhibit the DEA models to be investigated in terms of their linear

programming equivalents achieved by transformation from their original (ratio and other) forms, as follows:

(1) BCC Ratio Form (modified for units invariance)--Efficiency condition e0 = 1 and all slacks zero.

max -0,o+ e r, +

subject to

n +

Y,= yrjXj "Sr
j-1

n=-,Ixijk j+ eo xb -si
ji-

n1=x, ;x
1=l

+ -

Xj , s t, si-0

A linear programming equivalent for the CCR Ratio Form is the same as the above with the

condition _Zj = 1 omitted.

(2) Additive Form -- Efficiency condition: All slacks equal zero.

S, M

,max +1ly i .1 i _
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subject to

yrO= FYrjkLj _S r

j-1

n"Xio=- Xij ),i "Si

j.1

n

j.1,

,j, SrS i  -- 0.

(3) LogihmicMultiolicative) Form -- Efficiency condition: All slacks equal zero:

ma. LT''+ 2

subject to

n 
+

Yro= YYri ), S r
j.1

n
"xio= -X ijXj "Si

j.1

n
1 j

),jsr ,si - 0,

where Yro and x io represent the output and input values for the DMUo being evaluated. The vertical

strokes represent absolute values, which are entered in all three models for consistency in effecting the

comparisons that are to be made, 1 and (3) differs from the other models in the above in that it is expressed

in logarithmic units, as indicated by the circumflexes over the appropriate variables and constants.

1See Charnes, Cooper, Seiford , and Stutz [13] for a discussion of this device in the additive model to make
the resulting efficiency values independent of the units in which the outputs and inputs are measured.
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Since the same Yro and x io values appear on the right in each of the above equations we can

always obtain a solution by setting the Xj value associated with these constants at unity. Hence, there is

no issue of the existence of solutions in the developments that follow. To be noted also is that E > 0 is a

small, non-Archimedean constant, which is used to accord a preemptive priority status to the choice of o

so that the maximization of the objective function in (1) will never cause an increase in the slack values to

take precedence over decrease in the value of 80.

To start, we have the following:

Theorem 1: DMUo will be characterized as efficient with the BCC ratio form if and only if it is

characterized as efficient with the additive form.

Eroo: If in (1), 0 < 1, then

x ijX* 5 ()exio < Xio
j=1

Thus Xj* together with some g slacks satisfy the constraints of (2). Thus such an

inefficient DMUO must be rated inefficient by (2), the additive form. Conversely, an

efficient DMUo according to (2) must have o= 1. But then with 8o= 1, problems (1) and

(2) have the same constraint set and functionals which differ only by a constant. Their

optimal solutions k., s , s must therefore be the same. Hence DMUs efficient

according to (1) are efficient according to (2) and vice-versa.

Q.E.D.

This proof also yields the following:

Corollary1: DMUo will be characterized as inefficient by the BCC ratio form if and only if it

characterized as inefficient by the additive form.

.CoroaM2: The optimal slacks in the additive model will always sum to a value which is at

least as great as the sum of the slacks in an optimal solution to the BCC model.

Turning from the BCC to the CCR ratio form, the above theorem is modified to the following:

Therem2: If DMUo is characterized as efficient by the CCR ratio form then it will also be

characterized as efficient by the additive model.
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Eroof: If an optimal basic solution (with 0o= 1, necessarily) does not contain the input-

output vector of the efficient DMUo, then since the "reduced cost" for DMUo is zero (i.e.

its optimal virtual input and output are equal), there is an alternate optimal basic solution

(adjacent extreme point) containing this input-output vector. Since an expression of a

vector by a basis is unique, X0.= 1 for this basic optimal solution.Thus there is an

equivalent CCR problem for DMUo with ,X- =1, hence an identical form to the BCC

model. Thus DMUo is CCR efficient if it is BCC efficient, hence, by Theorem 1, if it is

additively efficient.

Q.E.D.

Remark 1: If DMUo is characterized as inefficient by the CCR ratio form with

00 < 1 and , * < 1, then it will also be characterized as inefficient by the additive form.
j.1

Sn

The CCR situation with 0o < 1 and Xj < 1, the case of locally increasing returns to scale, is more
j-1

complex and will not be analyzed in detail. The qualitative nature of this relation will depend on the relative
*n *

magnitudes of 00 < 1 and Tkj < 1, in a manner that will be apparent when we examine the relations
i-i

between the logarithmic (multiplicative) and additive models, as we shall do next. We needed to note here

the relations between additive and BCC forms because their production possibility sets are different. Cf.

the discussion of Figure 1 in Chames, Cooper, Golany, Seiford and Stutz [111.

To examine the relations between the additive and logarithmic (multiplicative) forms we will need

the following lemmas in which we assume that the constants zk are all positive and the variables wk
t

satisfy Wk > 0, ,wk= 1. Using "In" to represent "natural logarithm" we have:
k.1

Lemma1: In (wkzk <XWkZ

Proof: Since all terms are non-negative, we have

X'WkZ k 5 exp Iwkzk
k-i kI



and therefore

In(±wkZk) !5 WkZk

as claimed.

Q. E.D.

Lema2:1WklnZk S In l k)k

Proof: Via the geometric and arithmetic mean inequality we have

Wk W, W2  W1 t

HlZk Z1 Z2 ... t !5XWkZk
k.1 k.1

with wk 2! 0 all k and XWk = .Taking logarithms,
k~i

Y.Wkln Zk (1n±WkZk)
k.1 -n

as claimed.

Q. E.D.

Combining Lemmas 1 and 2 then gives

-Qrolarv: FWklnzk 5 ln( XWkZi 5 ZWkZk
k-1 \k1 k-1

Now suppose we have a solution which satisfies the logarithmic model so that for the first r = 1,..

s constraints in (3) we have

(4) yro5 yj X

This same solution will also satisfy the first r = 1 . , s constraints in the additive model. This may be

sh )wn by arguing from contradiction as follows. Assume that for some r this solution produces

n

>r ' Y~jx 1
i-i
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By virtue of Corollary 2, this gives,

(5) y =a inyr > In (Yri .i 1yrj Xj

But since In yrao-. this contradicts the assumption that this solution satisfies (4) for al1

r = 1, 2, .. , s constraints.

This solution for (3) need not satisfy the second set of i = 1, 2. m constraints in (2), however,

unless it also satisfies the conditions specified in the following:

Theorem 3: Any solution which satisfies the constraints of the logarithmic model will also

satisfy the constraints of the additive model if and only if

In ( Xij,) < In xi,
j-1

forall i =1,2, . m.

Proof: By taking anti-loganthms, it is immediately seen that this choice of X values

satisfies the second set of i = 1 ..... m constraints in (2). As was shown by the argument

from (4) to (5), it also satisfies the first set of r = 1 .. s constraints with all j _> 0 and

nXX . = 1.

Jil

Q. E. D.

To proceed in the other direction we now assume that we have a solution to the additive model so

that for the second set of i = 1,2 .... m constraints we have

m

(6) ,x, X1j_ Xo
i=1

Via Corollary 2 this gives

(7) xii XI !5 I<nlx -Xio

so that this solution also satisfies the corresponding constraints in the logarithmic model.



By reasoning as before we then have:

Theorem 4: Any solution which satisfies the constraints of the additive model will

also satisfy the constraints of the logarithmic model if and only if

In
yrjX, _ Iny =y

Proof: Reason via anti-logarithms as in the proof of Theorem 3.

0 E.D

One might be tempted to think that DMU's rated efficient by the CCR form, hence, equivalently via

Theorems 1 and 2, by the additive form, should also be efficient going to the multiplicative form since this

has been the experience in various real model instances1 . However, this is not true in general. Witness

the following one output, two input example.

DMU
1 2 3

A
y 1 1 1

A 2
x 2 2+25 1

1 1-6 2

x 
2

1See, e.g., Ahn [1].



As shown in (3), the constraints are given by 10

1 2 3

1 + 1X 2  + 1 3  -s 1 1 1

-2X, -261+8)X 2  1 1 3 -S1 2 -(+) -

-1 X 1  - 2(1 -8)X2  -s2-1 -1(i -8) 1

+ 2 + .3  1 1 1

with X, s+, s- > 0

If, here, 0 < 5 < 1/2, i.e. 262 < ,, then DMU 1 is inefficient,

?2=1/(1+28), S= 1 +41 +282)-1 , , = ?- = + 0

DMU 2 and DMU 3 are efficient.

The corresponding additive form (2) has DMU data

DMU
1 2 3

Y e e e

e2 e2(1 +8<2

x e e e

e e(1 -8) e2

All three DMUs are efficient with also (approximately) 2e 282 > e5, i.e., 1/2 > 8 > 1/2e. Thus,

DMU 1 is efficient additively but not multiplicatively. The conditions given above for efficiency via the

geometric and arithmetic mean inequalities are therefore not vacuous relative to efficiency of DMUs with

the additiive and multiplicative forms.

Geometrically this may be seen in the following plot. Since the three DMUs have the same output

and therefore also their convex combinations, the envelopment relations may be plotted in the plane of
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the two input dimensions. Efficiency means that there are IM points in the convex hull to the "southwest"

of an efficient point, i.e., that there are no points to the left of the 450 line joining DMUs 1 and 3.

A X 2

2 e2 ©

2 0 =2e 2 82

1 ~e

22
S I -e|

1 2 e 2

This is false for the multiplicative model and true for the additive model as shown. The "stretching" of scale

in going from one to the other is sufficient to reverse the position of DMU 2 relative to the 450 line.
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3. SUMMARY AND CONCLUSION

This paper has examined different DEA models with respect to the characterizations of efficiency

and inefficiency that may be obtained when these different models are applied to the same data. Other

tasks that remain include a study of the differences that might occur in the efficiency values when different

forms of DEA all rate a particular DMU as inefficient. Empirical studies, as in Ahn [1], indicate that the

values resulting are fairly robust across different models. This is in contrast to the experience with

statistical regressions reported in Ahn [1] where different statistical models gave widely varying results

(often conflicting even qualitatively) when one class of models was replaced with another to study

phenomena such as returns-to-scales, etc. Since there is usually little or no knowledge of the correct

functional forms to employ in most studies, especially in studies of not-for-profit entities such as schools,

army recruitment, etc., this can be disturbing -- especially when important issues of policy depend on the

results of such estimates.

One possibility is to use DEA when the requisite knowledge of parametric forms is not available for

use in statistical regressions. Alternatively, the results from a DEA study may be checked with advantage

against results from regression studies even when they yield different or conflicting results -- on the

principle that" it is better to be confused in the presence of knowledge than to be sure of one's self in its

absence." Finally, regression and DEA may be used in combination, as was done by Rhodes and

Southwick [18], for example, who used DEA to locate efficiency frontiers and then applied statistical

regressions to ascertain whether returns-to-scale possibilities were obtainable from the functional form

fitted to these points on the thus identified efficiency frontiers. In such cases, the results in this paper can

provide guidance as to when the resulting efficiency characterizations may be expected to be the same

and when they might differ from a use of different DEA models.

1
'I
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